Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38267027

ABSTRACT

All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA Primase/genetics , DNA Primase/metabolism , Unfolded Protein Response , Cell Cycle Proteins/genetics , DNA Damage , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics
2.
Microbiol Spectr ; 12(1): e0314823, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38096459

ABSTRACT

IMPORTANCE: Campylobacter jejuni is a bacterium that is prevalent in the ceca of farmed poultry such as chickens. Consumption of ill-prepared poultry is thus the most common route by which C. jejuni infects the human gut to cause a typically self-limiting but severe gastrointestinal illness that can be fatal to very young, old, or immunocompromised people. The lack of a vaccine and an increasing resistance to current antibiotics highlight a need to better understand the mechanisms that make C. jejuni a successful human pathogen. This study focused on the functional components of one such mechanism-a molecular system that helps C. jejuni thrive despite the restriction on growth-available iron by the human body, which typically defends against pathogens. In providing a deeper understanding of how this system functions, this study contributes toward the goal of reducing the enormous global socioeconomic burden caused by C. jejuni.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Ferric Compounds , Metalloporphyrins , Poultry Diseases , Animals , Humans , Campylobacter jejuni/genetics , Chickens/microbiology , Iron , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Poultry , Poultry Diseases/microbiology
3.
bioRxiv ; 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37461706

ABSTRACT

Campylobacter jejuni is a leading cause of bacterial gastroenteritis worldwide. Acute infection can be antecedent to highly debilitating long-term sequelae. Expression of iron acquisition systems is vital for C. jejuni to survive the low iron availability within the human gut. The C. jejuni fetMP-fetABCDEF gene cluster is known to be upregulated during human infection and under iron limitation. While FetM and FetP have been functionally linked to iron transport in prior work, here we assess the contribution by each of the downstream genes ( fetABCDEF ) to C. jejuni growth during both iron-depleted and iron-replete conditions. Significant growth impairment was observed upon disruption of fetA , fetB, fetC , and fetD , suggesting a role in iron acquisition for each encoded protein. FetA expression was modulated by iron-availability but not dependent on the presence of FetB, FetC, FetD, FetE or FetF. Functions of the putative thioredoxins FetE and FetF were redundant in iron scavenging, requiring a double deletion (Δ fetEF ) to exhibit a growth defect. C. jejuni FetE was expressed and the structure solved to 1.50 Å, revealing structural similarity to thiol-disulfide oxidases. Functional characterization in biochemical assays showed that FetE reduced insulin at a slower rate than E. coli Trx and that together, FetEF promoted substrate oxidation in cell extracts, suggesting that FetE (and presumably FetF) are oxidoreductases that can mediate oxidation in vivo . This study advances our understanding of the contributions by the fetMP-fetABCDEF gene cluster to virulence at a genetic and functional level, providing foundational knowledge towards mitigating C. jejuni -related morbidity and mortality.

SELECTION OF CITATIONS
SEARCH DETAIL
...